Block-Based Editing in a Textual World

Tom Beckmann
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
tom.beckmann@hpi.uni-potsdam.de

Marcel Taeumel
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
marcel.taeumel@hpi.uni-potsdam.de

justGrabbedFrom: send
|f

Lukas Bohme
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
lukas.boehme@hpi.uni-potsdam.de

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

® System Browser: BouncingAtomsMorph @ L - : - - -
» (MonticelloTone IAbstractMedial —all - Timuanse . g ° . o .y
» * Morphic ZASMCamer: change reporting * fnto\lf_‘lorld. . - - - - » . 9
v * MorphicExtras “JAtomMorph drawing RS O U U0 . L . .
AdditionalMor |BannerMorph initialization + justDroppedint
AdditionalSug BlobMorph menu setAtomCount System Browser: BouncingAtomsMorph
Additionaiwic LN other showlnfectionk e |AbstractMediaEventM Elstec
Books ICalendarMorpt stepping startinfection o MorShicExtras “1ZASMCameraMarkM change reporting + stepTime
DoubleClickEx: submorphs - ad¢ * SteP " | AtomMorph drawing
i Flash # stepTime A omhs BannerMorph initialization
Exceptions _ Flasher " " AdditionalSupport] P
- S transmitinfecti ionaoupp - BlobMorph
Flaps . o=t A “|BlobMorp menu
- instanc class ? updateTemper: AdditionalWidgets B BouncingAtomsMorp other
browse senders implemen versions inheritanc hierarchy = wvariables blocks -!go?'kf_ instance class 7 stepping
BouncingAtomsMorph >> setAtomCount browse senders implementors versions inheritance hierarchy variables
|'countString count| submorphsDo:
countString -m
‘= UIManager default o m isMemberOf: AtomMorph
request: 'Number of atoms? ifTrue: m bounceln: r ifTrue: | [] bounces := bounces + 1 |
9 initialanswer: self submorphCount printString compute a 'temperature' that is proportional to the number of bounces
self Ju divided by the circumference of the enclosing rectangle
[0 jumpTo: send self updateTemperature: [10000.0 * bounces / r width + r height
coun on: countString 38.61003861003861 [°]

se
ar g/6/ lustAddedAsTileRow ! |plementor - in no change set -

PR NS PP,

transmitinfection ifTrue: self transmitinfection

Figure 1. A screenshot of our block editor embedded in the Squeak/Smalltalk code browser. Shown are (1) our block editor, on
the left and right, (2) the block cursor, (3) a running program, and (4) a probe showing the program’s runtime values.

Abstract

Block-based programming environments offer unique ben-
efits for editing or integration of visual tools that could be
useful across programming environments. However, most
general-purpose programming environments are designed
around textual representations of programs.

We explore the design of a block-based editor that inte-
grates with existing textual environments, using the example
of the Squeak/Smalltalk development environment. Through
a user study, we show that users felt generally comfortable

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

PAINT °25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2160-1/25/10
https://doi.org/10.1145/3759534.3762681

with our editor’s edit interactions when compared to textual
editing. We discuss the design’s difficulties and opportunities
we observed during our user study and our own use to help
propose block-based editor designs that integrate well with
text-based environments.

CCS Concepts: « Software and its engineering — For-
mal language definitions; Visual languages; Integrated and
visual development environments.

Keywords: Block-based Editing, Structured Editing, Visual
Programming, General-purpose Programming

ACM Reference Format:

Tom Beckmann, Lukas Bohme, Marcel Taeumel, and Robert Hirschfeld.
2025. Block-Based Editing in a Textual World. In Proceedings of the
4th ACM SIGPLAN International Workshop on Programming Ab-
stractions and Interactive Notations, Tools, and Environments (PAINT
’25), October 12—18, 2025, Singapore, Singapore. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3759534.3762681

https://orcid.org/0000-0003-2907-4532
https://orcid.org/0000-0002-3065-6997
https://orcid.org/0000-0002-7559-6035
https://orcid.org/0000-0002-4249-6003
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759534.3762681
https://doi.org/10.1145/3759534.3762681

PAINT ’25, October 12-18, 2025, Singapore, Singapore

1 Introduction

Block-based programming languages are successfully used
for teaching [21]. Their visual and direct nature lends itself
well for encouraging experimentation with fast feedback
loops and fewer errors, compared to their textual counter-
parts. Integrating visual tools within a block-based editor
also appears easier compared to text editors: where text edi-
tors have to accommodate syntax errors, arbitrary deletion
commands, or line-based text layout, integrating visual tools
in a block-based editor is as simple as placing the relevant vi-
sual tool within a block. As such, we see potential benefits to
gain from using of block-based editing not just in education
but also in professional or general-purpose programming
for easier integration of visual tools within general-purpose
programming languages.

Indeed, projects such as GP [14] and Snap! [9] demonstrate
that general-purpose programming is possible within block-
based editors. At the same time, the majority of professional
programming environments and their ecosystems are cen-
tered on text and keyboards for input. Textual programming
languages tend to be structured in ways that appear not to
translate well to block-based editors [23]: textual languages
appear to favor many small building blocks that compose
to flexible wholes simply by adding or omitting specifiers,
such as "const" or "final", or expressions, such as a chain of
setter calls, whereas block-based editors must either produce
a separate block for each permutation, include slots for each
specifier, or carry extra user interface elements that allow
users to configure the block in-place. Other small differences
add minor points of friction. For instance, block-based editors
typically distinguish between expressions and statements,
whereas in many textual languages top-level expressions
automatically become statements.

In this paper, we explore a design for a block-based edi-
tor that seeks compatibility with the existing environments
of general-purpose textual programming languages, using
the example of a language with a small grammar, Smalltalk.
To begin generalizing our insights, we also describe early
prototypes of our concept for a subset of the JavaScript and
Scheme programming languages. We address space efficiency
to allow comfortable reading of larger programs (Section 2),
editing interactions in the absence of well-designed block
palettes and the presence of large API surfaces through a
block cursor (Section 3), describe an evaluation of its usability
(Section 4), and discuss bi-directional compatibility with the
surrounding textual environment (Section 5).

The presented editor concepts moved through three design
stages. In the first stage, which resembled practice-led craft
research [5], feedback from one of the authors and informal
user testing with other programmers allowed us to find a
baseline design (shown in Figure 2). In a second stage, we ran
a user study (n=8) using the baseline design to analyze how
our concept compares to text editing and identify further

Beckmann, Bdhme, Taeumel, Hirschfeld

areas for the concept to improve. In a third stage, one of the
authors continued to use our editor concept over the course
of multiple months for all Smalltalk development activities.
Through this third stage, we identified and also fixed many
points of friction for co-existence with a textual development
environment to arrive at a concept that is usable as main
editing tool (shown in Figure 1).

2 Mapping from Text to Blocks: Clarity vs.
Space Efficiency

In this section, we will describe the visual layout of our editor
and its design rationale. At the design’s core is a need to re-
solve the tension between visual clarity and space efficiency.
Screen space usage has been identified as a major issue for
visual languages [7, 16, 18]. Block-based editors typically
use large insets, strong borders, and distinct colors for their
blocks. As a result, the blocks are clearly distinguishable
but even small programs tend to occupy large portions of a
screen. Since we want to be able to display existing textual
programs in the context of the tools users are familiar with,
we seek a design that gets as close to the space use of textual
Smalltalk as possible while maintaining clear boundaries
between blocks.

As a first step for the mapping, we need to identify the lan-
guage’s elements that turn into distinct blocks. The Smalltalk
programming language has a small grammar compared to
other popular textual programming languages like Python
or Java. Its major components are three types of message
sends, assignments, return statements, blocks, arrays, and
literals. Control flow primitives and other structures that
often extend a language’s grammar are syntactically realized
in Smalltalk through message sends and blocks.

Message sends in Smalltalk are either unary, binary, or key-
word messages. Unary messages appear as 2 squared, binary
messages as 2 + 3, and keyword messages as 2 raisedTo: 3

or 5 clampLow: @ high: 10. Here, the message selectors are
respectively #squared, #+, #raisedTo:, and #clampLow:high:.

Our block-based editing interface for Smalltalk is designed
to be bi-directionally compatible, so we want to ensure that
programs remain legible to people familiar with textual
Smalltalk. At the same time, the block-based structure of
our editor imposes some constraints on the possible edit
operations that would otherwise be possible in text, as we
will describe later on in more detail. To clearly communicate
these constraints, we change some of the syntactic conven-
tions of textual Smalltalk to avoid inadvertently making users
believe that the editing operations familiar to them from text
were possible.

Our visual layout is adapted from a design described in
prior work [3]. We map the parse tree of the default Squeak/S-
malltalk [11] parser one-to-one to blocks. Its granularity
matches the vocabulary that users familiar with the language
would expect, comprising, e.g., assignments, message sends,

Block-Based Editing in a Textual World

or arrays, and no elements that exist purely for technical
reasons, such as "parenthesized elements" or "keyword part".
Each node of the parse tree is mapped as a block in the form
of a nested rectangle. The rectangles’ visuals aim to support
the communication of the nested structure, as during editing,
valid operations are constrained by the nesting.

We use color in two ways: first, brightness of the blocks’
background color increases with deeper nesting. To make
the levels clearly distinguishable for common use cases, we
settled on nine levels. When blocks reach plain white, a sub-
tle border still allows users to discern boundaries. Second,
for each Smalltalk block closure, we shift the hue of the back-
ground color or give a stronger border. As a result, groups
of linear control flow are visually separated.

Editing in our editor occurs on a block level, which cor-
responds to full parse nodes of a program’s parse result.
Consequently, it is not possible to delete a single parenthesis
or move it separately. During early prototyping, users were
commonly attempting to delete parentheses when they ap-
peared in the locations they are familiar with from text. To
better communicate the valid editing operations, we use the
syntactic characters as a form of icon by prefixing blocks
with them, as visible in Figure 2 (note the square brackets
[1 that are surrounding the block’s content in the textual
Smalltalk grammar). Users can still recognize the element as
they are familiar with the syntactic characters, but they no
longer appear to offer an affordance for deletion, as they are
removed from the text flow within the blocks.

Round parentheses in Smalltalk serve to override prece-
dence of operations, as in most other programming lan-
guages. As the nested tree structure already encodes the
precedence, we opted to remove round parentheses, remov-
ing another source of confusion when it comes to supported
editing operations. Further, we omitted most whitespace
from the mapping and employed an automatic layouting
system that attempts to find a near-optimal layout within
linear time [27]: each type of block, such as message sends or
assignments, communicates positions for soft- and hard-line
breaks. The layout algorithm then traverses the tree struc-
ture, attempts to lay out blocks in a single row and falls back
to introducing line breaks where soft line break markers
have been placed, starting from outer-most elements. As a
result, the block layout is subject to only few jumps while
users are typing, as line breaks occur near the root of the
tree, and closely resembles a layout that authors of Smalltalk
code manually create.

An initial version of the editor omitted all whitespace.
However, as a form of secondary notation, whitespace is
commonly used to, for example, visually group statements by
introducing empty lines. As the importance of this function
became evident in our own use of the editor, we introduced
the ability to add empty lines within any statement block.

The insets around the contents of each block are the de-
ciding factor for the editor’s space efficiency, or lack thereof.

PAINT ’25, October 12-18, 2025, Singapore, Singapore

Initial

Mailservice >>

request: email body: body subject: subject

[] 'subject = 'DEBUG'

[1 [self error: 'Subject empty'] 'subject =

self
sendEmail

body: body

ifTrue: .

subject: subject

sendEmail: ifAbsentPut:

] |Contact |isg

atiApy):
at:ifAbsentPut: ifAbsentPut: .
N] (Contact new:
attributeAt:put: send

ifAbsentPut:

[] (Contact new: |emaill

Figure 2. An edit history of a Smalltalk method for sending
mails. Refer to Section 3 for a detailed description. (1) shows
the initial method. In (2), we restructure the condition at the
top to remove the "DEBUG" clause. In (3), we modify the
existing access to the address book and adapt it to save a
new entry by fuzzy-matching against the autocompletion. In
(4), we type out an expression to create a new contact. These
interactions are carried out through the keyboard and our
block cursor without need for a mouse or a block palette.

By removing the insets, our use of space and visual layout
would be nearly identical to text. However, the differences
in node color would be invisible except in the leaf nodes.

A dense layout is generally preferable, as it allows users to
reference more information without the need for navigation
actions, as long as it remains clearly legible. The final dimen-
sions of the method result from the sum of the height of all
lines but only the maximum of the width of all lines. Thus,
as a compromise between clarity of nesting and space effi-
ciency, we always allocate horizontal insets. Vertical insets
are applied only to keyword message sends with more than
one message part, where the block structure is otherwise
not readable: the keyword message send must be clearly
distinguishable as a continuous block nesting several other
blocks.

An alternative design could have kept the round paren-
theses, which disambiguate the nesting of keyword message
sends. We decided against this since the parentheses would
then, once again, appear like an editable part of the text flow.

PAINT ’25, October 12-18, 2025, Singapore, Singapore

3 Editing Through a Block Cursor

In terms of editing, we chose to investigate keyboard-centric
interactions that resemble those of textual editors. Since the
environment of Smalltalk is designed around textual editing,
its libraries also feature large API surfaces and are often
designed for composition of many small message sends as
opposed to few large blocks.

Our editor design allows the use of drag-and-drop for
editing and also features block palettes. For keyboard-centric
interactions, we propose an approach to editing we call the
block cursor. The block cursor allows users to create or modify
blocks through their keyboard. During edit interactions, the
block cursor ensures that the program remains in a valid
state. In our design, a program is considered valid if it is
syntactically correct in its textual equivalent with the sole
exception that we allow empty leaf nodes, often named holes
in structured editors.

Figure 2 shows a scenario where a programmer uses the
block cursor to edit a Smalltalk method that is sending an
email. The programmer wants to remove a debug clause from
the top of the method and ensure that previously unknown
email addresses are added as contacts to our address book.

1. First, the programmer moves the block cursor to the
subject isEmpty expression.

2. The programmer then uses the cut-around shortcut to
cut out the peBUG block surrounding the block cursor.

3. The programmer moves the block cursor to the ?> oper-
ator that is querying the address book. They start typ-
ing a fuzzy match of the desired symbol at: i fAbsentPut:
to filter the autocompletion menu. Upon accepting the
suggestion using the tab key, the block cursor is moved
to the hole of the new missing argument.

4. The programmer starts typing a square bracket to
create a closure. They proceed to type out the tex-
tual equivalent of the desired expression, Contact new:

email, and the block cursor automatically creates the
required block structure as each token is completed.

Conceptually, the block cursor can be considered as a
three-element tuple consisting of

o the currently selected block,

e the currently active mode, which is either the text
input mode or the block selection mode, and

e a clipboard containing zero or more blocks.

This tuple forms the context that controls the availability
and outcome of actions.

In the following, we first describe navigation using the
block cursor, then block input, restructuring subtrees of
blocks, and finally modification of block leafs.

3.1 Visual Navigation Using The Block Cursor

Navigation using the block cursor is designed with two con-
straints in mind: first, the block cursor’s movement follows

Beckmann, Bdhme, Taeumel, Hirschfeld

the visual layout of the blocks rather than structural proper-
ties of the AST, and second, the block cursor enables direct
keyboard input whenever possible.

To ensure the constraints, the cursor traverses the blocks
from leaf node to adjacent leaf node. As such, it mimics the
behavior of a text cursor that traverses between visually
adjacent elements. We initially experimented with cursor
movement that follows the tree’s pre-order enumeration but
almost all test persons we asked during formative user tests
preferred movement along the visual structure.

As another consequence, the block cursor skips blocks that
only act as containers for other blocks, such as the closures
in Figure 2. The block cursor will thus move only between
places that accept direct input, or leaves.

When the programmer needs to address container struc-
tures, such as the aforementioned closures, the block cur-
sor’s selection mode allows to enlarge selections. Through
the Shift+Up shortcut, the block cursor selects the next block
along the currently selected block’s chain of parent blocks. In
the example in step 2 of Figure 2, the programmer uses this
function to select the full subject isEmpty expression starting
from the subject leaf node in the tree.

Vertical cursor movement is equivalent to the behavior
of cursor movement word processor: we locate the horizon-
tally closest cursor position that appears below or above the
current cursor position. The cursor always selects a specific
block and within that block a specific position in the block’s
text, if any. When the cursor is moved over the boundary
of a nested text field, it automatically jumps to an adjacent
block.

3.2 Grammar-assisted Input

Since input using the block cursor is designed to closely
resemble textual input, we derive rules for interactions from
the language grammar. These rules form a system we call
grammar-assisted input.

In the simplest case, the block cursor is currently in a hole,
such as the empty statement in step 4 of Figure 2. Holes
exist in different contexts: the empty statement accepts any
Smalltalk expression, while the hole for the message send
part in step 3 accepts only identifiers with a colon postfix.

Input handling can be modeled as a state machine that
transitions between different grammar rules. Using the ex-
ample of a hole for the expression statement in Smalltalk,
we can transition to all commonly used grammar rules using
just the first typed character. The complete set of rules is as
follows:

e given a digit, create a number literal,

e given a letter or an underscore, create an identifier,
e given a single quote, create a string,

e given a double quote, create a comment,

e given a hashtag, create a symbol,

e given a dollar sign, create a character,

Block-Based Editing in a Textual World

3 4 5* 5

- join| ([lexer]) path - join esxor

[t

()

Figure 3. (1) The programmer starts with the block cursor
located in a hole. (2) upon typing the first "p" of "path’, the
block turns from a hole to an identifier. (3) the dot character
may not appear as part of an identifier, the block cursor will
thus wrap the current block in a binary operator structure
(specifically an attribute access), which can contain the dot
character. (4) when typing "join", the input is again rejected
for the currently active binary operator structure and instead
gets moved to the next hole. (5*) the programmer pressed the
opening parenthesis character, so the block cursor wrapped
the current block in a method call. This is an intermediate
step that the user will not get to see. (5) as the precedence
of the dot operator is higher than that of the method call
operator in JavaScript, the block cursor now instructs the
method call to perform a left-rotation, restructuring the tree
according to the expected structure.

e given a curly brace, create an array,

e given a square bracket, create a block closure,

e and, if we are in the first expression of a block closure
and we receive a colon, create a block binding.

Notably, this mapping prevents two comparatively rare
constructs in Smalltalk from being entered: byte arrays use
#[0 1 2] as syntax and literal arrays use #(e 1 2). Since the
above listing commits to a symbol upon seeing a hashtag,
neither of these constructs can be created.

For languages with more complex grammars, such as C,
this same problem occurs much more frequently. For in-
stance, typing an f in a place for a statement in C could,
among others, indicate a reference to a variable, a type for
a declaration, a type for a definition, or a for-loop. Our sys-
tem would have to wait for a non-alphanumeric character
to appear to begin disambiguating, or prompt the user for
manual disambiguation. In this editor design, we opted for
manual disambiguation for the Smalltalk array as the other
two types of arrays are used infrequently: after creating a
dynamic array, the user can select it and issue a conversion
command.

Similar to determining the type of a block through input,
the block cursor interprets single invalid keystrokes accord-
ing to the programmer’s most likely intent and automatically
performs a tree restructuring. For example, if the program-
mer types a + while in an identifier block, the block cursor
rejects the input for the identifier block as it is not a valid
character in an identifier as per the language’s grammar.
Instead, the block cursor wraps the number block in a bi-
nary operator with the identifier block on the left-hand side
and a new hole on the right-hand side of the operator. If
the programmer now types another letter while the block

PAINT ’25, October 12-18, 2025, Singapore, Singapore

cursor is still in the operator block, the block cursor again
rejects the input but forwards it to the hole in the operator’s
right-hand side. This interaction can be seen in steps (1) to
(4) of Figure 3 for the attribute access operator in JavaScript.
During early user testing, three important properties of
grammar-assisted input became apparent.

Do not interfere with muscle memory. During our study
pilot, programmers routinely pressed the space key to sepa-
rate the plus operator from its operands, which is, as previ-
ously described, not necessary since the grammar-assisted
input automatically restructures or forwards input. In earlier
versions of the block cursor a press of the space key created
a new message send block around the selected block, such
that users were left with two additional message send blocks
they did not mean to create when typing a binary addition
the way they would in a text editor. Correspondingly, we
added further rules to the handling of the space key that
instead move the cursor to adjacent blocks in the way users
would expect from a text editor.

Follow operator precedence. Languages that have com-
plex precedence rules require the block cursor to automati-
cally rotate the tree as the programmer is typing a longer ex-
pression. For example, in JavaScript, if the programmer types
path.join(, the structure shown in step 5 of Figure 3 should
be the result. Without awareness of precedence, the (char-
acter would wrap the join block in a method call, rather than
the path.join compound, as seen in step 5 of Figure 3. The
block cursor produces the expected results by first perform-
ing the simple wrap operation and then asking the newly
added outer block whether its precedence dictates that it
should have wrapped around the next parent as well. If so,
we perform a tree left-rotation with the outer block as pivot,
restructuring the tree to fit the programmer’s expectation.

For Smalltalk, we break this rule for message sends as for-
mative user tests showed that the simple rule of always send-
ing to the currently selected block led to more predictable
behavior. As an example, consider the statement 2 = 3 ifTrue
: [1. When typed in our editor the same way as in a text
editor, the textual equivalent of the resulting program would
instead be 2 = (3 ifTrue: [1), as the 3 is the selected block
when we begin creating a message send using the space
key. This finding was somehow surprising to us but may be
due to Smalltalk having a very simple precedence system
that already breaks with users’ expectations, for example for
mathematical binary operations of the form 2 + 3 % 4, which
in C would have to be expressed as (2 + 3) x 4.

Support backspace to undo. Previous studies [12] have
shown that programmers often use backspace to undo acci-
dental changes, which also matches with observations from
our study. To support this as part of grammar-assisted in-
put, the block cursor ensures that any automatically created
structures can be removed again by hitting the backspace

PAINT ’25, October 12-18, 2025, Singapore, Singapore Beckmann, Bdhme, Taeumel, Hirschfeld

user presses backspace

Ih"

has
previous adjacent
block?

leading symbol?
(e.g. quote)

adjacent is
own child

cursor at start? self is empty?

delete around adjacent

focus adjacent

oy |

parent has more
than one child?

Figure 4. Flowchart illustrating the decision tree for matching against the block structure to handle backspace in a way that
allows undoing the creation of blocks that resulted from erroneous user input. Each decision is illustrated by an example
block configuration. Blocks appearing in blue are from our Smalltalk implementation, blocks appearing in yellow are from our

JavaScript implementation.

key. The rules we derived for this have so far been able to
generalize to all block constructs that our grammar-assisted
input produces. Figure 4 illustrates this system.

3.3 Restructuring Trees Using Expressive Actions

As described, grammar-assisted input will automatically re-
structure trees when the user’s input conveys an intention.
To allow users to manually restructure blocks where there
is no direct equivalent through normal text input, as for ex-
ample in step 2 of Figure 2, the block cursor supports a set
of expressive restructuring actions.

Most restructuring interactions with the block cursor
make use of its clipboard. To provide more control, the block
cursor offers users specializations of the usual cut, copy, and
paste actions as shown in Table 1, such as pasting before or
after the selection.

Table 1. Overview of restructuring actions.

Action ‘ Specializations

insert before | after

insert statement | before | after

paste before | after replace
copy self around

cut self around

swap \ left \ right \

rotate subtree ‘ ‘ ‘

Most programming languages have only few distinct shapes
that valid subtrees assume. Binary operators, for example,

naturally create binary trees. Another important structure
are sequences: these appear as a, typically arbitrary, number
of siblings in a subtree. Languages use sequences for lists of
arguments, statements in a block, or elements of an array
literal. We refer to these blocks that map to sequences of
language constructs as sequence blocks.

Sequence blocks share a set of dedicated actions for ma-
nipulating their contents. Programmers insert new elements
before or after their current selection in a sequence using
an insert shortcut from Table 1. The sequence block will de-
cide what form the new element should take, usually taking
the form of a hole waiting for input. Additionally, sequence
blocks allow pasting the block cursor’s clipboard before and
after the selected block. As sequences of statements are likely
the most often used type of sequence in programs, we intro-
duce dedicated actions for inserting new statements above
and below the statement containing our block cursor. These
actions will always create a new statement, independent of
the block cursor’s nesting depth in an expression.

For more complex restructuring, the cut-around action is
an often helpful tool. It is used in step 2 of Figure 2 to remove
the second condition clause: the action replaces the selected
block with its parent, giving the impression of deleting the
block around the selection. It will additionally place the now
removed parent in the block cursor’s clipboard and leave
a hole where the selected block used to be. Upon pasting,
the clipped block wraps around the selection, rather than
replacing it. This allows programmers to quickly move outer
expressions around.

Block-Based Editing in a Textual World

files [[1]]

Figure 5. A JavaScript while loop iterating over a list of files.
The programmer can change it to be a for loop by editing
the keyword’s label. The arity of the block will automatically
adapt, adding holes where JavaScript’s semantics of for-loops
require the loop condition and step. The existing arguments
and statements remain unchanged.

3.4 Modifying Blocks In-place

Not allowing the user to change parts of a block that would
cause a rippling effect to its arguments avoids syntax errors
and allows the environment to guide programmers when as-
sembling their block program [23]. To still support common
cases, especially those where users are used to be able to
perform these changes very easily in text, the block cursor
allows programmers to also change parts of blocks that im-
ply changes to its structure in-place while making sure the
result remains well-formed. Consider editing a while loop
to instead use a for loop, as illustrated in Figure 5. The pro-
grammer moves their cursor into the keyword and changes
it to for. Since we know from JavaScript’s grammar that a for
loop has three slots for elements in its clause, we adapt the
clause by adding new holes but keep the first element. The
programmer could now proceed to move the condition to
the second slot using the swap command. For the reverse, we
drop the now superfluous blocks in our editor. Alternatively,
the blocks could have been "ejected” and placed next to the
method, such that users can still refer to them if needed.

Similarly, blocks can be reinterpreted, allowing program-
mers to keep a block’s content but change its semantics,
rather than having to create a new block and move the con-
tent. For example, a variable or string block can be automat-
ically reinterpreted as any type of block that requires one
textual label when pasted.

In our implementation, these types of edits require custom
handling logic in the classes implementing the respective
structures. Either they convert from one to structure to an-
other, or, as with the for-to-while example, we abstracted
these language components into a single class based on their

PAINT ’25, October 12-18, 2025, Singapore, Singapore

8 4 0 4 8
Participants

| am familiar with Smalltalk.

| am familiar with
Block-based Programming.

strongly disagree slightly disagree slightly agree [l strongly agree
disagree neutral agree

Response
Figure 6. Most participants rated their familiarity with
Smalltalk above average and indicated varying experience
with block-based programming systems.

structure. In this case, we have a single "KeywordWithBlock"
class that supports if, while, and for constructs in JavaScript.

4 Evaluation

We conducted a within-subjects user study to get qualitative
insights on how programmers edit programs using the block
CUISOT.

4.1 Study Design

Participants were given two editing tasks and performed
each once in Visual Studio Code (VS Code) and once in our
editor implementing the block cursor concept, for a total of
four conditions. Our goal was not to simulate a realistic pro-
gramming session but to understand how users’ approach to
edit operations that commonly occur during programming
sessions may differ in our editor. To that end, we designed
our tasks around a previously observed distribution of com-
mon edit actions [12]. To ensure participants would perform
similar sequences of actions, allowing us to draw compar-
isons, we showed the participants screenshots of each step’s
final result and asked them to reproduce the shown code.
While participants performed the changes, we took note of
erroneous inputs and means of performing the changes.

In the first task, participants extended an existing Smalltalk
class implementing the Observer pattern with the functional-
ity to subscribe to specific topics. The source file comprised
50 lines of code, with 20 lines requiring changes as part of the
task. In the second task, participants were asked to type an
implementation of the quicksort algorithm in Smalltalk from
scratch, spanning 20 lines of code. We alternated the editor
that participants start with to mitigate effects of familiarity
with the code samples.

Participants were allowed to use all functionalities they
were aware of in the default configuration of both editors,
including autocompletion or multi-cursor editing. Our ed-
itor integrates with Squeak/Smalltalk’s [11] built-in auto-
completion system and we made sure to seed VS Code’s
autocompletion with all needed identifiers before the task.

Participants. We recruited 7 graduate students and 1 pro-
fessional programmer for our study (5 male, 3 female). Three
participants had seen our prototype prior to the study in an

PAINT ’25, October 12-18, 2025, Singapore, Singapore

(4f12) Swapping

In a text editor, you usually move code by copy-pasting.
Here, you can also u vap commands directly.

swapLeft Ctrl S

clearInput Cirl 2

Select the 6 in the array

~
~

Using <Ctrl Shift right>, swap the 6 until it reaches the

end of the array.
Select the 2 in the mess send below the array.
Using <Ctrl shift lef wap it with the number 10.

While we're here, one more useful shortcut to know: move
the cursor into the 77777, press <Ctrl a> to empty it,
then type 1024.

SBTutorialStep class == stepSwappingMethod
7345k

self assert: .
— 10

Figure 7. A screenshot of the tutorial that participants in
the study were able to walk through before working in our
editor. The relevant shortcuts are shown as buttons near the
top and a number of tasks are presented and automatically
checked off once completed in the code snippet below.

earlier version with a different set of shortcuts. The partic-
ipants reported 3 to 5 years of professional programming
experience and 5 to 15 years of programming experience in
general. They rated their familiarity with Smalltalk as 2 - 7
out of 7 and their familiarity with block-based programming
as 2 - 5 out of 7, as seen in Figure 6.

Procedure. We used TeamViewer! to conduct the study
remotely: participants controlled a remote machine that had
the editors set up and had a key tracker running in the
background (which the participants were informed of). The
screen was setup such that the left two-thirds were taken
up by the participant’s editor and the right third showed
the next set of changes to be performed. The instructors
were able to see the participants’ screens to take notes on
their usage behavior. We asked participants to think aloud
while performing the tasks, to get insights into their usage
and identify interactions where the cognitive load appeared
higher.

Directly before starting the first task in our editor, we
asked participants to walk through an interactive tutorial
of the shortcuts of our editor prototype shown in Figure 7.
During the tutorial, participants were allowed to ask the
instructor for clarification. The time required to complete
the tutorial varied heavily between participants, as some
participants had already begun commenting on the editor
design during the tutorial. After finishing all conditions,

1https://www.teamviewer‘com/en—us/, accessed: 2025-06-27

Beckmann, Bdhme, Taeumel, Hirschfeld

Comfortable editing in VS1 -
Comfortable editing in VS2 -

Comfortable editing in BC1 .

Comfortable editing in BC2 .
'
8 4 0 4 8
Participants

strongly disagree slightly disagree slightly agree [l strongly agree
disagree neutral agree

Response
Figure 8. Participants reported whether they felt comfort-
able with performing the editing tasks in our editor (BC) and
in the text editor (VS).

participants filled out a survey with 7-point Likert scale
questions on their experience and impressions, followed by
an unstructured interview with the instructor.

4.2 Results

In the following, we report and interpret the survey results,
think-aloud comments, interview responses, and observa-
tions. We refer to participants as P1 through P8. Quotes are
translated from German.

Editing Experience. Participants reported whether they
felt comfortable performing the edit tasks through Likert
scales. Most participants either slightly or strongly agreed, as
indicated in Figure 8. Those who disagreed or were neutral
noted that they were still unsure of some of the interactions
and that they would need some more time to get used to
the interaction scheme. We discuss some of the challenges
participants reported or we observed below.

Erroneous Input. The participants made errors in both
editors. In VS Code, participants incorrectly entered essential
pieces of syntax (colons to delineate message sends, dots to
terminate statements, incorrect nesting of parenthesis) in
12 out of the total 16 runs. In our editor, participants made
structural mistakes in 6 out of the total 16 runs, with some
recognizing and fixing them later. We will further discuss
erroneous inputs participants made in the specific sections
below.

Navigation. All participants except for P8 were able to in-
tuitively move the block cursor around in all four directions
with some mentioning that "it behaves just like a text cursor".
P8 expected the navigation to follow the tree structure, rather
than the visual structure of the blocks, and struggled through-
out the study. Besides movement in the cardinal directions,
some participants appeared to initially struggle with identi-
fying when to use the shortcut to enlarge selections "up the
tree". Others actively used the enlarge selection shortcut to
explore the exact nesting and association of blocks to their
surroundings.

Grammar-assisted Input Across Languages. To find
to what extent the block cursor’s grammar-assisted input

https://www.teamviewer.com/en-us/

Block-Based Editing in a Textual World

reatre|-gatn)

reare 1)

[#5] - readritesync]| €
path - sotn (“tser " "re")
(text]err) =

[sote]errr] LoD
console| * log (] text)

Figure 9. A snippet of JavaScript that we asked partici-
pants to try and recreate without further explanation of
the JavaScript block syntax and interactions.

generalizes across languages, we also asked participants to
enter the JavaScript block structure shown in Figure 9 as
part of the study. We did not ask participants’ to rate their
experience with JavaScript but only ensured that they had
used the language before and were familiar with the syntax.
All participants were able to reproduce the snippet, requiring
no further instructions beyond those received for Smalltalk,
except for two cases of confusion: first, to add an argument,
users should press the generic insert actions. Instead, partic-
ipants tried to use the comma key. None initially used the
insert action but most tried the shortcut just after.

Second, we designed keyword control structures, which
do not exist in Smalltalk, such that pressing the space key
after the keyword would expand the structure, e.g., typing
if and pressing space would result in the expected block
structure. We have since adapted it to also expand when the
opening parenthesis is pressed, which was what most par-
ticipants expected, likely because pressing space explicitly
was not required in other parts of the interaction design,
unless letters of two consecutive tokens appeared. Beyond
those two cases, participants voiced that they felt well sup-
ported by the grammar-assisted input system, with some
mentioning that it behaved according to their expectations.

Restructuring. Multiple participants showed excitement
when discovering the swap and wrap restructuring actions
during the tutorial, noting that these operations often feel
cumbersome in text editors. All participants were initially
confused about the cut-around action but most stated that
they understood its intent after using it on more examples.
The fact that the clipboard is automatically filled after all
delete (cut) operations required some care, leading to some

10

PAINT ’25, October 12-18, 2025, Singapore, Singapore

listener at: ifPresent:

listener removeKey: anObject

listener at:

anObject ifPresent:

listener removeKey: anObject

Figure 10. Participants frequently split the at:ifPresent:

message send in two separate blocks (top), rather than
extending the existing at: message send with a second
ifPresent: message part (bottom). The textual equiva-
lents would be listener at: (anObject ifPresent: [listener
removeKey: anObject]) vs. listener at: anObject ifPresent: [
listener removeKey: anObject].

participants overriding their clipboard contents when allo-
cating space for the paste operation. This is an issue that
also occurs in the Vim? editor, where delete actions fill the
default clipboard register as a side effect. As a solution in
Vim, any delete action can be prefixed with a special shortcut
to address a specific clipboard register.

Participants often started making selections when they
did not necessarily need to do so. This was in particular
noticeable with the "insert statements" action, which works
independent of block nesting as explained in the tutorial,
but participants stated that they often did not feel certain
where the new statement would go unless they first move
the cursor to a block adjacent to where they want the new
statement to appear. We also noticed cases where selections
caused mode errors [19]: our design constrained actions
based on whether or not a selection was made. We have since
adapted the corresponding actions to provide the behavior
that participants expected.

Modifying Blocks. Participants frequently made use of
the option to reuse existing blocks and adapt their labels,
including the option to adapt the arity of a message send. A
common source of errors was the use of the "wrap in message
send" action as opposed to the insert action to extend an
existing message send, as shown in Figure 10. Participants
noted that they would have likely not run into this problem
had they formulated the code themselves, as they most often
simply misread the nesting as shown in the screenshot they
were asked to recreate. This points to a need for improving
our visualization of blocks.

In the version of the prototype used during the study, our
Smalltalk implementation used distinct types of blocks for
assignments and message sends. This was another frequent
source of errors, as participants did not realize that convert-
ing between the two was not straightforward, see Figure 11.
The participants attempted to enter the tokens that make
up assignments in Smalltalk in the text field for the message
send, indicating that merging structurally similar AST nodes
into one type of block supports users’ intuition: specifically,

Zhttps://www.vim.org/, accessed: 2025-08-18

https://www.vim.org/

PAINT ’25, October 12-18, 2025, Singapore, Singapore

Figure 11. At the top, the dedicated assignment block of
an earlier version of our prototype is shown. Below, is the
empty message send block and a message send with the =
operator, which participants frequently confused with the
assignment operator.

an assignment operator behaves structurally identical to a
binary message send.

4.3 Threats to Validity

Internal. As participants were asked to think-aloud, their
behavior and impressions may have been altered. The pre-
sentation of the tasks was optimized to facilitate comparison
of sequences of interactions across participants and do not
necessarily reflect the typical way that a specific program-
mer would tackle the presented tasks. Some participants
stated that they expected to be able to perform both tasks
more quickly if they had planned out the actions themselves,
rather than copying them from our instructions. Since the
authors of the editor also conducted the study there is a risk
of participant response bias [8].

External. 1t is likely that participants who received more
training will perform differently in our editor. In our obser-
vations, reported experience with Smalltalk also appeared
to influence efficiency and confidence with editing in both
editors. For example, participants with more reported experi-
ence with Smalltalk appeared to struggle less with entering
the more complicated multi-part keyword messages (such
as 5 clamplLow: @ high: 10), which is a construct rarely seen
in other textual programming languages. Since we did not
collect quantitative measures we cannot say if this is a sig-
nificant factor. Repeating the experiment with a different,
maybe syntactically more complex, language could yield
different results.

5 Integrating into an Existing Environment

To find how our proposed design fits into the existing envi-
ronment of Squeak/Smalltalk, one of the authors used the ed-
itor almost exclusively for all Smalltalk-related programming
tasks over the course of several months. In the following, we
describe and discuss the resulting experience.

5.1 Integration with Squeak and the Operating
System
Initial versions of our editor opened methods on a 2D infi-

nite canvas, comparable to CodeBubbles [6]. Later versions
then integrated with the default Smalltalk browser, as seen

11

Beckmann, Bdhme, Taeumel, Hirschfeld

® System Browser: SBInputDeleteTest)
2 spLrammar

“ivjuie

S —-all - > testDeletelnA
ceore | NCEEITIEL © testDeletelnB
v * Core = SBMessagef o testDeletelnB
= SBMessage! > testDeletelnE
Cpp ~ e SBStBuiIderéO = testDeleteln
» Customjavas

> testNestedSe

browse senders | implement versions | inheritance hierarchy variables blocks

testDeletelnNestedArray » ¥ © Auto-run
|block editor al

block := self parse: ‘'[self square: {a}]'
editor := self methodFor: block

i ?
e S instance class ?

a := block statements first arguments first submorphs first

editor startlnput: a at: 3 replacingContents: false

editor performForSelection: #deleteBeforeCursor

self
assert: '[(self square: {}).\]' withCRs

equals: [block sourceString
[(self square: {}).[[i]

editor performForSelection: #deleteBeforeCursor

Figure 12. Screenshot of the default Squeak/Smalltalk
browser with our editor as the editing widget. Shown is
a test method with a wrapper that automatically executes
the test on save, and a watch showing the value observed
during execution for the wrapped expression.

in Figure 12. While the author still used the canvas when
prototyping, especially for live programming loops, the in-
tegration with the browser proved important for its ease of
access to the APIs of classes.

Early on, we invested considerable time in improving au-
tomatic formatting of textual code, as the blocks omit any
formatting. Consequently, the formatting of the textual code
our editor produced had to look at a minimum legible and
ideally idiomatic, for use in textual contexts such as code
reviews in online code repositories.

Another important aspect turned out to be bi-directional
synchronization with the default system clipboard. Notably,
the block cursor maintains a block clipboard that stores a
reference to the copied block object. When copying a block,
we also write a textual version of the block into the system
clipboard. The user can thus paste the textual version of the
block externally. Conversely, when pasting, we first inspect
the system clipboard. If the same string we wrote for the
last-copied block is still in the system clipboard, we paste the
block reference. Otherwise, we attempt to parse the textual
clipboard as blocks and insert them. On parse failure, the
user currently has to manually correct the source first. In
practice, this happened rarely, likely in large part because of
the simple grammar of Smalltalk.

For integrating with the large API surfaces of the Smalltalk
classes, we used an autocompletion popup as it is common in
most IDEs. This proved to be an effective tool to create blocks.

Block-Based Editing in a Textual World

When completing, we left holes for any arguments, such that
the user can use the tab key to jump to the next pending
insertion points. More generally, the explicit hole concept
coupled with tab and shift+tab for navigation between holes
became an important part of the author’s workflow. At times,
the author even created new holes using the newline shortcut
as jump marks to return to in a bit.

5.2 Tools inside the Block Editor

As the blocks expose the structure of the program node tree
directly, creating domain-specific tools that integrate tightly
with the source code was simplified. For example, we created
a wrapper for test case methods that shows a run button, its
pass/fail state, and even has a toggle for automatically re-
running it on save. The editor broadcasts events of general
interest to all tools, such as our test case wrapper, so that
they can react when methods are saved or similar.

The tools we created either attached to nodes or, more
commonly, replaced them. For example, to show a watch
tool around an expression that displays the last value that
the expression evaluated to, we changed the actual method
source code to contain our instrumentation and then wrote
a tool that matches against the instrumented program nodes
and shows the widget in their place. This approach yielded
two notable advantages: first, we did not have to maintain
a source map or similar approach to translate between the
source code as shown to the user and the source code as
executed by the runtime including instrumentation. Second,
this approach made copy-paste of tools near effortless, as the
copy interaction would copy the underlying instrumented
code and, upon pasting, the instrumented code would once
again be replaced by the tool.

5.3 Generalizability

As Squeak/Smalltalk already uses interface elements instead
of plain text for all structures except method source code
and has a relatively simple grammar, integrating into the
Squeak/Smalltalk may be easier than in other environments.
To take first steps toward understanding generalizability to
other languages, we created editors for subsets of JavaScript
and Scheme using the block cursor.

As Scheme has even fewer structurally different constructs
than Smalltalk, its implementation for the block cursor ended
up smaller and simpler. In our implementation, we ended up
with specific implementations for the different common lit-
erals, boolean, string, symbol, number, and a general expres-
sion element that could optionally be quoted. By omitting
specific elements for special forms like if or define, users are
able to change the semantics of the special form while keep-
ing any arguments. We still communicate well-formedness
of special forms by adding an error highlight if their struc-
ture is invalid. In the palette, we offer pre-built compositions
of special forms that only omit the non-fixed parts. Beyond
the flexibility that we gain from the simple structural model,

12

PAINT ’25, October 12-18, 2025, Singapore, Singapore

we also noticed through our own experiments using the edi-
tor the usefulness of the well-established shortcuts found in
editors designed for S-Expressions, such as the "slurp" and
"barf" operators as found in ParEdit * that are used to take
in or eject elements from S-Expressions.

For languages with larger grammars, a significant chal-
lenge is to enumerate and derive suitable interactions for all
blocks. For example, the JavaScript parser babel.js lists more
than 80 types of AST nodes in its implementation [2]. Kogi,
a tool to derive block-based languages for Google Blockly
from context-free grammars demonstrates an automated ap-
proach to map an existing language to blocks [24]. While
this reduces the effort significantly, it currently results in
high numbers of distinct blocks for large languages.

For our prototype, we chose to manually implement the
language decomposition into blocks. The guiding principle
was to merge as many blocks as possible based on structural
similarity: rather than having separate blocks for "while" and
"for" loops in JavaScript, there is only a single type of key-
word block that has a text field to specify its exact semantics,
as seen in Figure 5. Coupled with the ad-hoc transformations
of the block cursor’s grammar-assisted input, this allows
making large parts of a language available with just a few
block types, reducing the cognitive load on the programmer
using the block-based programming system. As an important
side-effect, this supports the ability to modify existing blocks
as changing a block to a structurally compatible one only
requires changing a keyword.

5.4 Correspondence to Block-based Programming

As outlined in Section 1, we wanted to find a design for
block-based editors to fit in the context of an existing tex-
tual general-purpose programming language. The design we
settled on might almost appear closer to textual editing than
to block-based editors in terms of visuals.

To ease a transition for users coming from block-based
editors, we integrated a custom theme that makes increases
block insets for easier drag-and-drop, and chooses colors
based on method categories, as most block-based editors,
as opposed to nesting depth. A screenshot can be seen in
Figure 13.

Similarly, we integrated a block palette such that users
can interact with the editor both through text input and
autocompletion, as well as purely through drag-and-drop.

6 Related Work

The block cursor concept builds on ideas of existing block-
based environments, syntax-directed or syntax-supported
editing, and implementations of projectional editors.
Block-based programming editors are often designed for
programming education or experimentation, for example,
Scratch [21] or Snap [9]. GP is an editor that resembles

3https://www.emacswiki.org/emacs/ParEdit, accessed: 2025-08-18

https://www.emacswiki.org/emacs/ParEdit

PAINT ’25, October 12-18, 2025, Singapore, Singapore

Common Search .. — — < =
< 1) t= {lastindex) = firstindex | | <= (1]
Waypoints Arithmetic = —
Smalltalk @+0® iffrue: “Handle 1 and 2 sized ranges directly."
Expressions = —
Data & Methods @-® (n ISR 0 JRHTRUESE (A seit
Arithmetic Operators. = =
Cgrgpar\son Operators () (%) firstObje | at: firstindex)|
! - S
Control Flow 5 at: lastindex
crammar) nagate f
Grammar Comparison Operators e . = s
s IfNIl: () (firstObject | <= lastObject]
ifNotNil:
9-0 0l o
@<0® | e
@ >= ® ifFalse: [destination |
® <=0 {1/ at: (lastindex | put: firstObject |
L o | . A
Lists i value: (firstObject) value: (lastObject;
(fisD rnl—,mmm.—l
select: | [| each |]

Figure 13. Screenshot of block palette and the excerpt of a
method performing merge sort in a theme with larger insets
and block colors chosen by semantic category of a method.

Scratch closely in terms of its interactions but extends the lan-
guage model to be suitable for more complex use cases [14].
For example, it allows the user to define custom methods
through blocks. Some concepts have been proposed to make
editing in GP more efficient, such as a toggle that switches
between the block and a text display of the source code [17].
Notably, the concept of a "block editing cursor” has also been
demonstrated [17], which allows users to move between
blocks with tab and the arrow keys, to delete blocks before
the cursor using backspace, and to invoke an autocompletion
menu when typing characters. A similar keyboard mode ex-
ists in Snap. In this paper, we provide a description of a block
cursor concept that maps to an existing textual programming
language, with its associated challenges of the grammar’s
complexity and users’ prior familiarity, and evaluate the
concept’s effectiveness.

Syntax-directed interactions have been considered in var-
ious other projects. For example, a syntax-directed keyboard
for touch devices [1] has been proposed that places buttons
to create common syntactic structures specific to the lan-
guage on the keyboard. TouchDevelop [22] is an application
development framework with a programming interface op-
timized for touch devices that mixes text-based editing for
expressions with a structured editor for statements to reduce
the likelihood of mistakes. In Tylr [15], the user is able to
modify structures orthogonal to the tree structure, granting
more flexibility. Sandblocks [4] demonstrates an approach
to map textual languages that generalizes across languages
by targeting the grammar formalism instead of a specific
language. As a result, quality of the editor is tied to the qual-
ity or decomposition of the grammar, whereas the approach
described in this paper allows the editor creators to con-
sider the most appropriate mapping from text to blocks from
scratch.

In frame-based editing [10], each program scope receives
a graphical box frame, while code at the expression level uses
text. The context is designed to enable a smoother transition
from block-based languages to textual languages. Editing
through direct manipulation is still possible but not at the
same granularity as in block-based editors. A study showed

13

Beckmann, Bdhme, Taeumel, Hirschfeld

that an implementation of this concept called Stride had a
positive effect on task completion time for programming
novices when compared to a purely textual programming
environment [20]. In the language editor implementation
framework Barista [13], when a new character is inserted in
a structure, the editor will convert the affected structure back
to its original textual tokens, incorporate the new character,
and reparse the tokens into structures. Frame-based editing
and Barista both move the core interface model further away
from blocks and towards text, while our block cursor concept
aims to maintain the visual appearance and interactions of
blocks where possible.

MPS is a language workbench for defining projectional
languages. In the context of MPS, aspects that enable user-
friendly projectional editors have been investigated [25]. The
authors demonstrated that editing efficiency in MPS-based
languages can surpass that of text editors using a concept
called Grammar Cells [26]. Grammar Cells define restruc-
turing rules that are triggered as users input characters of
a language’s textual syntax. Grammar Cells were an inspi-
ration for the grammar-assisted input in our block cursor
concept.

7 Conclusion

In this paper, we investigate the design of a block-based edi-
tor that can be integrated into and used as part of a text-based
programming environment. For that, we presented the con-
cept of a block cursor that enables interactions with blocks
similar to interactions in a traditional text editor, offering
experienced programmers the familiarity they are used to
from their traditional environments. Participants of a user
study (n=8) where able to comfortably use the editor.

Through our own extended use of our block-based editor,
we identified important insights for its integration, such as
autoformatting, clipboard support, or tooling. Our approach
demonstrates a way for block-based editors to adapt to the
needs of textual environments when needed.

Acknowledgments

We sincerely thank the anonymous reviewers for their de-
tailed and valuable feedback. This work was supported by
SAP and the HPI-MIT "Designing for Sustainability” re-
search program®.

References

[1] I Almusaly, R. Metoyer, and C. Jensen. 2017. Syntax-directed keyboard
extension: Evolution and evaluation. In 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). 285-289. doi:10.
1109/VLHCC.2017.8103480

[2] Babel. 2020. @babel/parser AST node types. https:
//web.archive.org/web/20210404141645/https://github.com/babel/
babel/blob/master/packages/babel-parser/ast/spec.md

4https://hpi.de/en/research/cooperations-partners/research-program-
designing-for-sustainability.html

https://doi.org/10.1109/VLHCC.2017.8103480
https://doi.org/10.1109/VLHCC.2017.8103480
https://web.archive.org/web/20210404141645/https://github.com/babel/babel/blob/master/packages/babel-parser/ast/spec.md
https://web.archive.org/web/20210404141645/https://github.com/babel/babel/blob/master/packages/babel-parser/ast/spec.md
https://web.archive.org/web/20210404141645/https://github.com/babel/babel/blob/master/packages/babel-parser/ast/spec.md
https://hpi.de/en/research/cooperations-partners/research-program-designing-for-sustainability.html
https://hpi.de/en/research/cooperations-partners/research-program-designing-for-sustainability.html

Block-Based Editing in a Textual World

(3]

[10

—

(11]

(12]

(13]

(14]

Tom Beckmann, Stefan Ramson, Patrick Rein, and Robert Hirschfeld.
2020. Visual design for a tree-oriented projectional editor. In Com-
panion Proceedings of the 4th International Conference on Art, Science,
and Engineering of Programming (Programming °20). Association for
Computing Machinery, New York, NY, USA, 113-119. doi:10.1145/
3397537.3397560

Tom Beckmann, Patrick Rein, Stefan Ramson, Joana Bergsiek, and
Robert Hirschfeld. 2023. Structured Editing for All: Deriving Usable
Structured Editors from Grammars. In Proceedings of the 2023 CHI Con-
ference on Human Factors in Computing Systems (Hamburg, Germany)
(CHI °23). Association for Computing Machinery, New York, NY, USA,
Article 595, 16 pages. doi:10.1145/3544548.3580785

Alan F. Blackwell and Sam Aaron. 2015. Craft Practices of Live Cod-
ing Language Design, Alex McLean, Thor Magnusson, Kia Ng, Shelly
Knotts, and Joanne Armitage (Eds.). Proceedings of the First Interna-
tional Conference on Live Coding.

Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adepu-
tra, and Joseph J. LaViola. 2010. Code bubbles: a working set-based
interface for code understanding and maintenance. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. ACM,
Atlanta Georgia USA, 2503-2512. doi:10.1145/1753326.1753706
Wayne Citrin, Richard S. Hall, and Benjamin G. Zorn. 1995. Addressing
the Scalability Problem in Visual Programming ; CU-CS-768-95.
Nicola Dell, Vidya Vaidyanathan, Indrani Medhi, Edward Cutrell, and
William Thies. 2012. "Yours is better!": participant response bias in
HCI. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Austin, Texas, USA) (CHI ’12). Association for
Computing Machinery, New York, NY, USA, 1321-1330. doi:10.1145/
2207676.2208589

Brian Harvey and Jens Monig. 2015. Lambda in blocks languages:
Lessons learned. In 2015 IEEE Blocks and Beyond Workshop (Blocks and
Beyond). 35-38. doi:10.1109/BLOCKS.2015.7368997

Michelle Ichinco, Kyle Harms, and Caitlin Kelleher. 2017. Towards
Understanding Successful Novice Example Use in Blocks-Based Pro-
gramming. Journal of Visual Languages and Sentient Systems 3, 1 (July
2017), 101-118. doi:10.18293/vlss2017-012

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
1997. Back to the Future: The Story of Squeak, a Practical Smalltalk
Written in Itself. SIGPLAN Not. 32, 10 (Oct. 1997), 318-326. doi:10.
1145/263700.263754

Amy]J. Ko, Htet Htet Aung, and Brad A. Myers. 2005. Design re-
quirements for more flexible structured editors from a study of pro-
grammers’ text editing. In Extended Abstracts Proceedings of the 2005
Conference on Human Factors in Computing Systems, CHI 2005, Portland,
Oregon, USA, April 2-7, 2005, Gerrit C. van der Veer and Carolyn Gale
(Eds.). ACM, 1557-1560. doi:10.1145/1056808.1056965

Amy J. Ko and Brad A. Myers. 2006. Barista: An implementation
framework for enabling new tools, interaction techniques and views
in code editors. In Proceedings of the 2006 Conference on Human Factors
in Computing Systems, CHI 2006, Montréal, Québec, Canada, April 22-27,
2006, Rebecca E. Grinter, Tom Rodden, Paul M. Aoki, Edward Cutrell,
Robin Jeffries, and Gary M. Olson (Eds.). ACM, 387-396. doi:10.1145/
1124772.1124831

John Maloney, Michael Nagle, and Jens Ménig. 2017. GP: A General
Purpose Blocks-Based Language (Abstract Only). In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education,
Seattle, WA, USA, March 8-11, 2017, Michael E. Caspersen, Stephen H.
Edwards, Tiffany Barnes, and Daniel D. Garcia (Eds.). ACM, 739. doi:10.
1145/3017680.3017825

14

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

PAINT ’25, October 12-18, 2025, Singapore, Singapore

David Moon, Andrew Blinn, and Cyrus Omar. 2023. Gradual Structure
Editing with Obligations. In 2023 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, Washington, DC, USA,
71-81. doi:10.1109/vl-hcc57772.2023.00016

Brad A. Myers. 1990. Taxonomies of visual programming and program
visualization. J. Vis. Lang. Comput. 1, 1 (1990), 97-123. doi:10.1016/
$1045-926X(05)80036-9

Jens Moénig, Yoshiki Ohshima, and John Maloney. 2015. Blocks at your
fingertips: Blurring the line between blocks and text in GP. In 2015
IEEE Blocks and Beyond Workshop (Blocks and Beyond). 51-53.
Bonnie A. Nardi. 1993. A Small Matter of Programming: Perspectives
on End User Computing. MIT Press, Cambridge, MA, USA.

Donald A. Norman. 1983. Design Rules Based on Analyses of Human
Error. Commun. ACM 26, 4 (1983), 254-258. d0i:10.1145/2163.358092
Thomas W. Price, Neil C. C. Brown, Dragan Lipovac, Tiffany Barnes,
and Michael Kolling. 2016. Evaluation of a Frame-based Programming
Editor. In Proceedings of the 2016 ACM Conference on International
Computing Education Research, ICER 2016, Melbourne, VIC, Australia,
September 8-12, 2016, Judy Sheard, Josh Tenenberg, Donald Chinn, and
Brian Dorn (Eds.). ACM, 33-42. doi:10.1145/2960310.2960319
Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay S. Silver, Brian Silverman, and Yasmin B. Kafai. 2009.
Scratch: programming for all. Commun. ACM 52, 11 (2009), 60-67.
doi:10.1145/1592761.1592779

Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, and Manuel
Fahndrich. 2011. TouchDevelop: Programming Cloud-Connected Mo-
bile Devices via Touchscreen. In Proceedings of the 10th SIGPLAN
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Portland, Oregon, USA) (Onward! 2011). As-
sociation for Computing Machinery, New York, NY, USA, 49-60.
doi:10.1145/2048237.2048245

Mauricio Verano Merino, Tom Beckmann, Tijs Van Der Storm, Robert
Hirschfeld, and Jurgen J. Vinju. 2021. Getting grammars into shape
for block-based editors. In Proceedings of the 14th ACM SIGPLAN Inter-
national Conference on Software Language Engineering. ACM, Chicago
IL USA, 83-98. doi:10.1145/3486608.3486908

Mauricio Verano Merino and Tijs van der Storm. 2020. Block-Based
Syntax from Context-Free Grammars. In SLE 2020 - Proceedings of the
13th ACM SIGPLAN International Conference on Software Language En-
gineering, Co-located with SPLASH 2020, Ralf Lammel, Laurence Tratt,
and Juan de Lara (Eds.). ACM/IEEE, 283-295. doi:10.1145/3426425.
3426948

Markus Voelter, Janet Siegmund, Thorsten Berger, and Bernd Kolb.
2014. Towards User-Friendly Projectional Editors. In Software Lan-
guage Engineering - 7th International Conference, SLE 2014, Visterds,
Sweden, September 15-16, 2014. Proceedings (Lecture Notes in Computer
Science, Vol. 8706), Benoit Combemale, David J. Pearce, Olivier Barais,
and Jurgen J. Vinju (Eds.). Springer, 41-61. doi:10.1007/978-3-319-
11245-9 3

Markus Voelter, Tamas Szabo, Sascha Lisson, Bernd Kolb, Sebastian
Erdweg, and Thorsten Berger. 2016. Efficient development of consis-
tent projectional editors using grammar cells. In Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language
Engineering, Amsterdam, The Netherlands, October 31 - November 1,
2016, Tijs van der Storm, Emilie Balland, and Daniel Varré (Eds.). ACM,
28-40. http://dl.acm.org/citation.cfm?id=2997365

Philip Wadler. 2003. A prettier printer. The Fun of Programming,
Cornerstones of Computing (2003), 223-243.

Received 2025-07-09; accepted 2025-08-11

https://doi.org/10.1145/3397537.3397560
https://doi.org/10.1145/3397537.3397560
https://doi.org/10.1145/3544548.3580785
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/2207676.2208589
https://doi.org/10.1145/2207676.2208589
https://doi.org/10.1109/BLOCKS.2015.7368997
https://doi.org/10.18293/vlss2017-012
https://doi.org/10.1145/263700.263754
https://doi.org/10.1145/263700.263754
https://doi.org/10.1145/1056808.1056965
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.1145/3017680.3017825
https://doi.org/10.1145/3017680.3017825
https://doi.org/10.1109/vl-hcc57772.2023.00016
https://doi.org/10.1016/S1045-926X(05)80036-9
https://doi.org/10.1016/S1045-926X(05)80036-9
https://doi.org/10.1145/2163.358092
https://doi.org/10.1145/2960310.2960319
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/2048237.2048245
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1007/978-3-319-11245-9_3
https://doi.org/10.1007/978-3-319-11245-9_3
http://dl.acm.org/citation.cfm?id=2997365

	Abstract
	1 Introduction
	2 Mapping from Text to Blocks: Clarity vs. Space Efficiency
	3 Editing Through a Block Cursor
	3.1 Visual Navigation Using The Block Cursor
	3.2 Grammar-assisted Input
	3.3 Restructuring Trees Using Expressive Actions
	3.4 Modifying Blocks In-place

	4 Evaluation
	4.1 Study Design
	4.2 Results
	4.3 Threats to Validity

	5 Integrating into an Existing Environment
	5.1 Integration with Squeak and the Operating System
	5.2 Tools inside the Block Editor
	5.3 Generalizability
	5.4 Correspondence to Block-based Programming

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

